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Abstract. For k > 0 let f (k )  denote the minimum integerf  such that, for any family 
of k pairwise disjoint congruent disks in the plane, there is a direction t~ such that 
any line having direction ~ intersects at m o s t f  of the disks. We determine the exact 
asymptotic behavior o f f ( k )  by proving that there are two positive constants dt, d 2 

such that dlx/k . , /~gk~f(k)~d: ,x /k~, /~gk.  This result has been motivated by 
problems dealing with the separation of convex sets by straight lines. 

1. Introduction 

For k > 0 let f ( k )  denote  the min imum integer  f such that, for any family A of  

k pairwise disjoint  unit  radius disks in the plane,  there is a direct ion a such that 

any straight line having direct ion a intersects at most  f o f  the disks. In this note 

the fo l lowing result is proved.  

Theorem 1.1. There exist two positive constants dl ,  d2 such that 

dl,J-k ' v /~g k <- f (  k ) <- d2x/k . x /~g k 

for all k > O. 
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The proof  of  the upper  bound is by a counting argument. The proof  of  the 
lower bound is more complicated. The main tool here is a well-known construction 
due to Besicovitch [1], which is implicit in his brilliant solution to the Kakeya 
problem. Besicovitch used this construction to show that there are plane figures 
of  arbitrary small area which permit a unit segment to change its direction by 
360 ° while moving continuously within them. 

Theorem 1.1 has been motivated by a result of  Tvergerg [2], which shows that 
for every positive integer n there exists a number  k = k(n)  with the property that 
if C~, C 2 , . . . ,  Ck are nonempty convex sets in the plane with pairwise disjoint 
relative interiors, then there is a closed halfplane which contains n of  the sets 
while the closure of its complement  contains at least one of the remaining k - n 
sets. He also describes an example, attributed to K. P. Villanger, which shows 
that we cannot require two sets to be contained in the closure of  the complement. 
This example consists of  an arbitrary number of  noncollinear line segments such 
that the convex hull of  any pair contains the point (1, 1) in its interior. Con- 
sequently, there can exist no halfplane such that two segments are contained in 
the halfplane and two are contained in the closure of its complement. 

However, if we require all the convex sets to be congruent disks, then the 
situation is entirely different and there exists a line with approximately half the 
disks on each side. Indeed, by Theorem 1.1 there is a direction a such that any 
line in this direction intersects at most d2x/kx/~g k disks. Choose a line having 
direction a such that, for either side of  the line, at least k/2 disks lie on that 
side or on the line. Since at most d2,fkx/~g k disks lie on the line, we conclude 
that the following holds. 

Theorem 1.2. There exists a constant c > 0 such that if  A is any family of k 
congruent nonoverlapping disks in the plane, then there is a straight line with at 
least k / 2 -  cx/kx/~g k disks completely contained on each side of it. 

2. The Upper Bound of  Theorem I,I 

Let A be a set of  k pairwise disjoint unit radius disks in the plane. Put r - -  
[v/-kk/lv~ kJ. For 0 -  < i < r/2, let It be a line that forms an angle (i/r)Tr with the 
positive part of  the x axis, such that among all lines in this direction, l, intersects 
the maximum number of  disks of  A. To establish the upper  bound of Theorem 
1.1 it is enough to show that one of these 1,'s intersects at most O(v/-k • ,/]-og k) 
members of  A. An easy geometric argument shows that, for i ~ j ,  the number  of  
disks that intersect both I, and !/is at most O(r/{i - j [ ) .  Indeed, since sin 0 -> 20/~r 
for all 0 satisfying 0 -  < 0 -  < ~r/2, we can easily Check that all of  these disks lie 
completely within an appropriate  4x  ( 2 + 2 r / l i - j l )  rectangle. Hence their total 
area (which is their number  multiplied by ~r) is O(r / l i - j [ ) ,  as needed. It follows 
that for each fixed i, 0 < i ~ r/2, the number  of disks that intersect l, and at least 

Vr/2 I / j )  = O(x/-k . x/~g k). Since the total one of  the other lj's is at most O( r .  2~j=1 
number  of disks is k there exists an i0, 0 ~ i0 < r~ 2, such that the number  of  disks 
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that intersect l,, and not any other  Ij is at most k / ( r / 2 )  = O(x /k"  ",/~g k).  Thus 
the total number  o f  disks that intersect l,, is O(¢-k .  vq-og k), complet ing the 
proof. 

3. The Lower Bound of  Theorem 1.1 

The p roo f  relies on several lemmas. The first one is a modified version, due to 
Perron and Schoenberg,  of  a theorem of  Besicovitch. A detailed p roo f  o f  this 
lemma appears  in [1]. 

Lemma 3.1. Let p >- 2 be an integer and let A = O A B  be an isosceles right triangle 
with hypotenuse A B  and area S. Divide the base A B  into m = 2 p - 2  equal parts 
by the points A = Ao, A~, A2 . . . .  , A,,  = B and let A~ be the triangle OAi-~Ai 
(1 <- i < - m ). Then it is possible to translate each A~ along the base A B  so that the 
area covered by all these translated triangles is at most 2S/p .  

For n > 5 and for a 5 × n rectangle R in the plane, we say that the direction 
of  R is c~ if its long edge has direction a. 

Lemma 3.2. For every n > 5 there exists a set A ,  in theplane with area O(n2/ log  n) 
that contains a 5 x n rectangle in every direction. 

Proof. Clearly, it is enough to construct  a set B, of  area O(n2/ log  n) containing 
a 5 x n rectangle in every direction a, 0 -  < a -< ~r/2, since then A,  can be obtained 
from the union of  two such sets. Let a = O A B  be an isosceles right triangle with 
hypotenuse A B  of  length 2 p-2 × 10, where p -  2 = [log2 n 1. Assume the angle 
~ A O B  of  A includes all directions a, 0 < - a -< ~r/2. Split the base A B  of  T into 
2 p-2 equal parts by the points A = A o ,  A ~ , A 2 , . . . , A n  = B and let Ai be the 
triangle OA,_IA~, 1 <- i -<2 p-2. We can easily check that for each a,  0 -  < a <-~r/2, 
at least one o f  the Ai's contains a 5 x n rectangle in direction a. By Lemma 3.1 
it is possible to translate the A,'s along the line A B  to obtain a set B, of  area 
O(area(m)/ log n ) =  O(n2/ log  n). This set clearly contains a 5 x n rectangle in 
each direction a, 0 < - a <- ~r/2, as needed. []  

Remark 3.1. 
area o f  any 
iq(n2/log n). 

Using the argument  o f  Section 2, it is not  difficult to show that  the 
set that contains a 5× n rectangle in every direction is at least 
We omit the details. 

Lemma 3.3. Let R be a 5 x n rectangle in direction a in the plane and let A be a 
family o f  f l ( n )  pairwise disjoint unit disks whose centers lie in A. Then there is a 
straight line in direction a that intersects f~(n) disks. 

Proof. Let L be a set o f  five lines, each parallel to the long edge of  R, that cut 
R into six equal parts. Obviously each disk in A intersects at least one member  
of L, and the desired result follows. []  
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The lower bound of Theorem 1.1 follows from the next lemma by substituting 
k = O(n2/log n). 

Lemma 3.4. There exists a set A of  at most O(n2/Iog n) pairwise disjoint unit 
disks in the plane, such that for every direction a there is a line having direction a 
that intersects at least t ) (n)  members of A. 

Proof By Lemma 3.2 there exists a set A, of area O(n2/log n) that contains a 
5 x n rectangle in every direction. Let C be a maximal (with respect to contain- 
ment) subset of  A, that satisfies the following two conditions: 

(i) The distance between any two distinct points in C is greater than 2. 
(ii) The distance between any point of  C and any point outside A, is greater 

than 1. 

Let A be the family of all unit disks whose centers lie in C. 

Claim 1. ICl<-area(A,)/  ~r < - O(n2/Iog n). 

Proof The members of  A are pairwise disjoint, each has area rr, and all of them 
lie inside A,. [] 

Claim 2. If R is any 5× n rectangle contained in A,,  then there are at least 
( n - 4 ) / 4 = 1 - 1 ( n )  points of  C inside R. 

Proof. Consider the family of  [C[ disks, each of  radius 2, with centers in C. By 
the maximality of  C, each point of  A, whose distance from the complement of 
A,  is bigger than 1 lies in at least one of these disks (since, otherwise, this point 
can be added to C). In particular, the set /~ of  all points of R whose distance 
from the boundary of R is at least 2 lie in these disks, and points of  /~ can 
lie only in disks whose centers are inside R. The total area o f / ~  is n - 4 ,  and 
since each disk of radius 2 cannot cover more than area 4 of  /~, the claim 
follows. [] 

We now show that the set A satisfies the assertions of Lemma 3.4. By Claim 
1 the cardinality of A is at most O(n2/log n), and by the definition of C the 
disks in A are pairwise disjoint. Let a be an arbitrary direction. By construction, 
A, contains a 5 x n rectangle R having direction a. By Claim 2 there are f l (n)  
points of  C inside R and hence, by Lemma 3.3, there is a line in direction a 
that intersects Q(n)  disks. This completes the proof  of  the lemma, and the lower 
bound of Theorem 1.1 follows. [] 

4. Concluding Remarks 

The proof  of Theorem 1.1 can be easily generalized to arbitrary families of  planar 
pairwise disjoint convex sets, each of diameter at most 1 and area at least y for 
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any y >  0. Thus, for any y >  0 there is a positive constant  c (y )  such that for every 
family A of  k pairwise disjoint convex sets, each of  diameter at most  1 and area 
at least y, there is a direction ~ so that each line in direction a intersects at most 
c(y)  • x/k I,£]-ffg k members  o f  A. Similarly, for any y > 0 there is a positive constant 
d (7) such that for any sequence (B, ,  B2, . .  •, Bk) on convex sets, each o f  diameter 
at most 1 and area at least 3/, there is a family A = {Ai . . . .  , Ak} of  nonover lapping 
convex sets in the plane, where A, is a translate of/3,  for 1 -< i <- k, and for each 
direction a there is a straight line having this direction that intersects at least 
d(7)V'-k • x /~g  k members  o f  A. These two results follow from the proofs above 
by observing that for any y >  0 there is a positive constant r (y )  such that each 
convex set o f  diameter at most  1 and area at least 3' contains a disk of  radius r(3,). 

Using these results it is possible to generalize Theorem 1.2 and obtain: 

Theorem 4.1. For any a > 0, there exists a constant c = c( a ) > 0 such that i f  A is 
a family o f  k nonoverlapping convex sets, each o f  diameter at most 1 and area at 
least a, then there exists a straight line with k /2-cx/-k~i-og k sets completely 
contained on each side o f  it. 

We conclude this paper  with an open problem related to Tverberg's  result. 
Given a family of  n disjoint segments, it is easy to verify that there exists a line 
which separates one of  the segments from ( n -  1)/4 others. Can  the ( n -  1)/4 be 
improved? We conjecture that ( n -  1)/4 can be replaced by a number  close to 
n/2.  (It cannot  be replaced by a number  larger than [ n / 2 ]  + 1.) 
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